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In a model with:
a) spin-1/2 partons: R should be 
small and decreasing rapidly with Q2

b) spin-0 partons: R should be large 
and increasing with Q2

Dasu et al., PRD49, 5641(1994)
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slopes ⇒ RA-RD

Nuclear higher twist effects and 
spin-0 constituents in nuclei: 

same as in free nucleons

ACCESS TO NUCLEAR DEPENDENCE OF R

Dasu et al., PRD49, 5641(1994)
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⇐	 RA-RD=0
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HEAVY NUCLEI AND COULOMB DISTORTION

- Focusing of the electron wave function
- Change of the electron momentum

DWBA

➫

Incident (scattered) electrons are 
accelerated (decelerated) in the 

Coulomb well of  the nucleus.

e

e’

p
n

Exchange of  one or more (soft) photons 
with the nucleus, in addition to the one 

hard photon exchanged with a nucleon

6

Effective Momentum Approximation (EMA)

 
          E → E + V
          Ep→ Ep + V }

_
_

   Aste and Trautmann,  Eur, Phys. J. A26, 167-178(2005)
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COULOMB DISTORTION EFFECT ON E03-103
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Coulomb corrections applied
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HEAVIER NUCLEI DATA FROM E03-103
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✓ Need several ε values with enough nuclei coverage

✓ Remove 3He data from the extrapolation

At constant Q2 and x:

➡ at each ε, fit the cross section ratios σA/σD  vs.  A-1/3 or ρ

➡ extrapolate the fit to infinite nuclear matter: A-1/3 →0 or ρ →0.17. 
              Get σNM/σD  for each ε.

➡ plot nuclear matter cross section ratios vs. ε/(1+εRD)

➡ slope of  the fit gives RNM-RD

EXTRACTION OF RNM
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RNM: X=0.5, NO COULOMB CORRECTION
A-dependence
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X-DEPENDENCE OF RNM-RD
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X-DEPENDENCE OF σNM/σD AT ε’=0

σ(NM)

W. Melnitchouk et al. / Physics Reports 406 (2005) 127–301 135

to as the Callan–Gross relation [10]. Beyond the quark–parton model, the residual Q2 dependence in
F1 and F2 arises from scaling violations through perturbative QCD corrections, as well as 1/Q2 power
corrections which will be discussed in the following sections. In terms of these dimensionless functions,
the differential cross section can be written as

d2!
d" dE′ = !Mott

(
2
M

F1(x, Q2)tan2
#

2
+ 1

$
F2(x, Q2)

)
. (13)

Expressed in this way, the functions F1 and F2 reflect the possibility of magnetic as well as electric
scattering, or alternatively, the photoabsorption of either transversely (helicity ±1) or longitudinally
(helicity 0) polarized photons. From this perspective, the cross section can be expressed in terms of !T
and !L, the cross sections for the absorption of transverse and longitudinal photons,

! ≡ d2!
d" dE′ = %(!T(x, Q2) + ε!L(x, Q2)) . (14)

Here % is the flux of transverse virtual photons,

% = &

2'2Q2
E′

E

K

1− ε
, (15)

where, in the Hand convention, the factor K is given by

K = W 2 − M2

2M
= $(1− x) . (16)

The ratio of longitudinal to transverse virtual photon polarizations,

ε =
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1+ 2

(
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)
tan2

#

2

]−1
, (17)

ranges between ε = 0 and 1.
In terms of !T and !L, the structure functions F1 and F2 can be written as

F1(x, Q2) = K

4'2&
M!T(x, Q2) , (18)

F2(x, Q2) = K

4'2&
$

(1+ $2/Q2)

[
!T(x, Q2) + !L(x, Q2)

]
. (19)

The ratio of longitudinal to transverse cross sections can also be expressed as

R ≡ !L
!T

= F2

2xF 1

(
1+ 4M2x2

Q2

)
− 1 . (20)

Note that while the F1 structure function is related only to the transverse virtual photon coupling, F2
is a combination of both transverse and longitudinal couplings. It is useful therefore to define a purely
longitudinal structure function FL,

FL =
(
1+ Q2

$2

)
F2 − 2xF 1 , (21)
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2.2. Spin-averaged cross sections

In the one-photon exchange approximation, the differential cross section for scattering unpolarized
electrons from an unpolarized nucleon target can be written as

d2!
d" dE′ = #2

Q4
E′

E
L$%W

$% , (5)

where # is the fine structure constant, and " = "(&, ') is the laboratory solid angle of the scattered
electron. The leptonic tensor L$% averaged over initial spins is given by

L$% = 2(k$k
′
% + k′

$k% − g$%k · k′) , (6)

where k and k′ are the initial and final electron momenta, respectively.
The hadronic tensorW $% contains all of the information about the structure of the nucleon target. Using

constraints from Lorentz and gauge invariance, together with parity conservation, the hadronic tensor can
be decomposed into two independent structures,

W $% = W1(%, Q
2)

(
q$q%

q2
− g$%

)
+ W2(%, Q2)

M2

(
p$ + p · q

q2
q$

) (
p% + p · q

q2
q%

)
, (7)

whereW1 andW2 are scalar functions of % andQ2. Using Eqs. (6) and (7), the differential cross section
can then be written

d2!
d" dE′ = !Mott

(
2W1(%, Q

2)tan2
&

2
+ W2(%, Q

2)

)
, (8)

where !Mott is the Mott cross section for scattering from a point particle,

!Mott =
4#2E′2

Q4 cos2
&

2
. (9)

Note that for a structureless target,W1 andW2 become (-functions, and Eq. (8) reduces to the Dirac cross
section for scattering from spin-12 particles.
In the Bjorken limit, in which both Q2 and % → ∞, but x is fixed, the structure functions W1 and

W2 exhibit scaling. Namely, they become independent of Q2, and are functions of the variable x only
(logarithmicQ2 dependence enters at finiteQ2 through QCD radiative effects). It is convenient therefore
to introduce the dimensionless functions F1 and F2, defined by

F1(x, Q2) = MW 1(%, Q
2) , (10)

F2(x, Q2) = %W2(%, Q
2) . (11)

In the quark–parton model the F1 and F2 structure functions are given in terms of quark and antiquark
distribution functions, q(x) and q̄(x),

F2(x) = 2xF 1(x) = x
∑

q

e2q(q(x) + q̄(x)) , (12)

where q(x) is interpreted as the probability to find a quark of flavor q in the nucleon with light-cone
momentum fraction x. The relation between the F1 and F2 structure functions in Eq. (12) is referred

F1 (NM)

F1 (D)

ε→0σ(NM)

σ(D)
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to as the Callan–Gross relation [10]. Beyond the quark–parton model, the residual Q2 dependence in
F1 and F2 arises from scaling violations through perturbative QCD corrections, as well as 1/Q2 power
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SUMMARY

 Heavy nuclei at low ε data from JLab E03-103 and Coulomb 
distortion:

  affects the extrapolation to nuclear matter which is key for comparison 
with theoretical calculations

  has a real impact on the A-dependence of  R: clear ε-dependence

  Some of  these conclusions depends mostly on the re-analysis of  the 
SLAC data including Coulomb corrections.

  Hint of  different nuclear effects in F1 and F2: need theoretical 
calculations which don’t assume the Callan-Gross relation: F2 = 2x F1

 Publication in preparation

  RA proposal at JLab 12 GeV in preparation
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Exact calculations of  the EMC effect exist:
• for light nuclei
• for nuclear matter
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EXTRAPOLATION TO NUCLEAR MATTER
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Incident (scattered) electrons are 
accelerated (decelerated) in the 

Coulomb well of  the nucleus.
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Fig. from A. Aste at Mini-Workshop on Coulomb 
Distortion, JLab May 2005

COULOMB DISTORTION
Exchange of  one or more (soft) photons 

with the nucleus, in addition to the one 
hard photon exchanged with a nucleon

Coulomb Distortion could have the same 
kind of impact as TPE, but gives also a 
correction that is A-dependent.
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Effective Momentum Approximation (EMA)

 

          E → E + V

          Ep→ Ep + V }

HOW TO CORRECT FOR COULOMB 
DISTORTION ?

_
_

⇔

   Aste and Trautmann,  Eur, Phys. J. A26, 167-178(2005)

1st method 2nd method

- Focusing of the electron wave function
- Change of the electron momentum

DWBA

➫

31



Patricia Solvignon

Effective Momentum Approximation (EMA)
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DISTORTION ?

_
_
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One-parameter model depending only on the 
effective potential seen by the electron on average.
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COULOMB DISTORTION IN QE SCATTERING
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   Gueye et al., PRC60, 044308 (1999)

data are available for both 12C !21" and 208Pb !22" over a
wide range of incident energies at the same angle. An inter-

polation procedure allowed us to find the incident electron

energy Ee! whose response corresponds to the optimal

matching between the positions of the electron and positron

quasielastic peaks. We chose paths of interpolation which

connect the maxima as well as the minima of the measured

response functions, and in between, we followed the paths of

the constant ratio between maximum and minimum.

Finally, the electron energy Ee! and the relative normal-

ization factor N of the electron and positron spectra are var-

ied to minimize the #2 between the two responses. The ex-
perimental value of the effective Coulomb potential energy

is then obtained as

!VC!"$Ee#!Ee!%/2.

If EMA is a good approximation, we must find a good

matching between the two spectra and a value of N compat-

ible with unity. In addition, the value of VC for different

kinematics on the same target should be the same. The re-

maining differences between the positron and electron re-

sponses, if any, are due to higher-order effects $focusing%.

B. Experimental results

Figures 5, 6, and 7 show the electron and positron re-

sponse functions after radiative corrections for the two 208Pb

and the 12C kinematics. We observe a shift between the elec-

tron and positron responses which increases with the nucleus

charge.

Figures 8, 9, and 10 present the positron response func-

tions for the three kinematics, together with the electron re-

sponses which result from the fitting procedure described in

Sec. III A, i.e., at incident energies Ee#!2!VC! and normal-
ized by the factor N. We note an overall fair agreement be-

tween the positron and electron responses.

The results of the Coulomb potential determination are

summarized in Table I for all the kinematics. For 208Pb the

VC values obtained for the two kinematics covered by this

FIG. 5. Positron and electron response functions for the kine-

matics 208Pb 420 MeV-60°.

FIG. 6. Positron and electron response functions for the kine-

matics 208Pb 262 MeV-143°.

FIG. 7. Positron and electron response functions for the kine-

matics 12C 420 MeV-60°.

FIG. 8. Positron experimental response function for the kine-

matics 208Pb 420 MeV-60° $full circles% compared to the electron
response function at Ee!"Ee#!2!VC!"383 MeV normalized by

the factor N"1.04 $open circles%. The positron elastic tail is at 420
MeV $dotted-dashed line%, the electron elastic tail is at 383 MeV
$dashed line%. Calculations by the Ohio group !14" are shown for
positron at 420 MeV $thick solid line% and for the electron at 383
MeV $thick dashed line%. Calculations by Traini et al. !12" are
shown for a positron at 420 MeV $thin solid line% and for electron at
383 MeV $thin dashed line%. The difference between the thin solid
and thin dashed lines is very small and cannot be distinguished in

the figure.
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Coulomb potential established in Quasi-elastic scattering 
regime !
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DENSITY CALCULATIONS
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Average density:
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